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Abstract 

It is shown that the non group-subgroup transition 
Pnam *->P21/b which the compound bis(propyl- 
ammonium) lead tetrachloride, (C3H7NH3)2PbCI4, 
undergoes must lead to domain structures on each 
side of the transition point. In both of them, the 
boundary operators are anticipated. 

1. Introduction 

Very recently (Zangar, Miane, Courseille, Chanh, 
Couzi & Mlik, 1989), an interesting non group- 
subgroup transition was observed in bis(propylam- 
monium) lead tetrachloride ( C 3 H v N H 3 ) 2 P b C I  4. The 
transition is reversible, occurs at 339 K under 1 atm 
(10SPa) and follows the sequence 

Pnam -. P21/ b 

(Z=4)  (Z=2)  

with increasing temperature. Z denotes, as usual, the 
number of formula units within a cell. 

Because of the transition, a domain structure is 
expected to appear (antiphase domains and twins by 
merohedry). All possible symmetry operators con- 
necting domains can be derived from the sole knowl- 
edge of space groups. To each boundary between 
domains is associated a coset of operators ( 'boundary 
operators'), which thus characterizes the type of 
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boundary. Any operator belonging to a coset trans- 
forms one variant into the variant on the other side 
of the boundary. Translation (antiphase) boundaries 
and twin boundaries are commonly observed, 
especially by electron microscopy or X-ray topogra- 
phy. In addition, group theory predicts in some cases 
mixed (i.e. glide reflections and/or  screw rotations) 
boundaries. The possibility of such a kind of boun- 
dary was first predicted in group-subgroup transitions 
(Guymont, Gratias, Portier & Fayard, 1976; 
Guymont, 1978) and indeed is very rarely observed 
(see, however, Jiang, Zhang, Hei & Kuo, 1985). A 
boundary is essentially an antiphase one as soon as 
at least one of the operators of the characteristic coset 
is a pure translation (Guymont, Gratias, Portier & 
Fayard, 1976). On the contrary, for a boundary to be 
essentially mixed (or 'translation-twin'), all the 
operators inside the characteristic coset must be 
mixed. 

The group-theory analysis was afterwards exten- 
ded to non group-subgroup transitions under rather 
general conditions (Guymont, 1981) and is applied 
here to determine the domain structures of 
(C3HvNH3)2PbCI4. 

2. Symmetry analysis of both structures 

The orthorhombic room-temperature structure of 
(C3H7NH3)2PbCla has been determined recently 
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(Meresse & Daoud, 1989). We shall take a different 
setting (already described by Zangar, Miane, 
Courseille, Chanh, Couzi & Mlik, 1989), more con- 
venient for our analysis. 

P 

Fig. !. One layer of orthorhombic (C3HTNH3)2PbCI 4. The direc- 
tions of  axes a and b are indicated. 

The structure consists of layers of corner-sharing 
P b C l 6  octahedra connected by propylammonium 
groups through hydrogen bonding N-H...CI. The 
C H  3 extremities are linked to the similar extremities 
of adjacent layers by van der Waals bonds. We take 
a and b axes in a plane parallel to one layer of 
octahedra (a =0.781, b =0.795 nm) with c perpen- 
dicular (c = 2.503 nm) (Figs. 1 and 2). With this set- 
ting, the space group reads Priam. 

In these orthorhombic axes {a, b,c}, the space- 
group operators are, with the origin at a centre: 

(110, 0, 0) (2,t,oo]1½, ½, ½) 
(2,to,oil ½, ½, O) 

(2,too,~lo, o, ½) 
(ilo, o, o) (n(loo,1½, ~., ½) 

(a,o,o,1½,½, o) (,,,,oo,,Io, o, '). 

t 
I 

S 
b 

Fig. 2. Projection of orthorhombic (C3HTNH3)2PbCI4 along a. 

; t r T  ) 

b "= Cr~ n 

Fig. 3. Relation between the monoclinic and the orthorhombic 
cells. 

(This is a slightly redundant combination of Seitz and 
Hermann- Mauguin notations.) 

The monoclinic high-temperature cell {am, bin, c,,,} 
is related to the orthorhombic cell as follows (Fig. 3): 

am = 1-35 nm 

bm= 0.786 nm ~ a 

c,,, =0"781 n m ~ b  

13= 71.9 °. 

In this monoclinic setting (am, bm= a, c,. = b), the 
space-group operators of P2t/c are, with origin 
chosen at a centre, 

(11o, o, o)(2,rO,ollo, ' , ' )  
(ilo, o, o) (C,o,o,lO, ~-, ~). 

3. Variant structure due to a non group-subgroup 
transit ion 

The group-theory analysis of a non group-subgroup 
transition (Guymont, 1981) shows that the domain 
structure appearing after a transition is determined 
by the sole operators lost at the transition, that is the 
operators not included in the group of the structure 
after the transition. Thus, different structural variants 
are expected on either side of the transition point, in 
contrast with the case of a group-subgroup relation 
where variants appear only on the side of the transi- 
tion point corresponding to the subgroup. 

Let us consider two space groups ~ and ~ (of 
orders H and L) not group-subgroup related. The 
intersection .9 = ~ n  Zf (of order I) is the maximal 
common subgroup. 

Consider the transition g(~  2E. The operators gg-  
are lost; the operators # = ~ n  ~ remain; and the 
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operators ~ - . . ¢  appear. Let us denote by hk the 
operators that have disappeared from ~ at the transi- 
tion. The number of variants is given by H/I. The 
set of operators lost at the transition is distributed 
among H / I -  1 cosets. 

The set of operators which transform the original 
variant Vo into, for example, Vk is hk~, which includes 
hk5 ~. 

In general, the invariance group of Vk is hk~hk ~, 
which includes hk..~hk ~. Therefore, the variants 
Vo, V~, V2, . . .  are invariant under the operators of 
~, h~5~h~ ~,h2~h2~,..., but also under additional 
operators since they are invariant under 
~, h~.~h~ ~, h:~h~_~,.... Only the lost operators are 
to be taken into account for determining the variant 
structure which appears, since the gained operators 
are part of the invariance group of the variant and 
therefore do not give rise to any other variant. All 
lost operators hk can be distributed among the various 
cosets hk5 ~ obtained by decomposition of ~ into 
cosets with respect to 5~. Let us select one operator 
h, in each coset as a coset representative, so that every 
coset can be written h,~, with a running from 1 to 
H~ I -1; a is the index of the coset of operators lost 
from ~,  operators which all transform Vo into V,. 
But, in addition, there are other operators which 
transform Vo into V,, : the complete set is h,.~. 

The method consists in first choosing a cell common 
to both structures and then in enumerating all 
operators, described in the common setting. Then the 
intersection group ~ is determined. The index of 5t 
in both groups gives the corresponding numbers of 
variants. If necessary, the distribution of lost 
operators among the different cosets with respect to 
5 ~ most often can be done by simple inspection. Then, 
we must build the complete characteristic cosets h ,~ .  

4. Application to (CsH7NHs)2PbCI4 

Let us choose as common cell the orthorhombic cell 
{a,b,c}. In this setting, P12ffcl becomes P2~/bll 
with a multiple side A-centred cell and therefore must 
be combined with the translation (110,-~,I) (group 
A2j/bl l ) .  Its operators are therefore doubled and 
read now: 

(110,0,0) (2,(,oo111, ½,0) 

(71o. o. o) (b,,,,o,1½. ~. o) 
(110, I, ~)(2,[,oo11~, 0, ~) 

( i l 0 , ' ,  I) (C,,oo,11, o, I). 

The intersection g r o u p _ P n a m n A 2 ~ / b  is only 
{(110, 0, 0), (710, 0, 0)} =- P1. It is rather unexpected 
that no 2~ is in common (which would be the case if 
the orthorhombic group were Pbmn instead of Pnam, 
or if the monoclinic group were P12~/a1 instead of 
P2~/bll). 

4(a) Transition Priam ~ P2~/ b 

The index of P1 in Pnam is 4. There are therefore 
four variants and three cosets of lost operators, corre- 
sponding to three kinds of boundaries with respect 
to one variant taken as reference. The decomposition 
into cosets h,,,,¢ is 

Priam el+{(2,i,ooll-~ ' ' ' ') 

+ {(2.o,o~ L'.-~. o). (a,o,o,l~. ~. o)} 
, I)  +{(2,to,,,~lo, o, ~) (m,,,o,,Lo, o, ~ }. 

The characteristic cosets h,,,~ are 

(2,t,ooll I, ½, ½)A2,/b 

= {(2,f,OOl[½,½, ~), (n(,oo, [ I, I, ½), (21t,ool[ ½,0, 0), 

(m(ioo)l ½,0, 0), (110, 0, l) 2 , 

(71o, o, I), (11o, I, o), (i lo,  I, o)} 
(2,~o,,,11½.½,0)A2,/b 

--{(2,to,oil ½, ½.0), (a(o,o~l~, I, 0), (2i,,,oll ~, 0. ~). 
(m,,,o,I ½,0, ½), (2too,ll 0, 0, 0), 

(m(oo,,I 0, 0, 0), (2,roo,]10, ~, 0), (bwo,] I 0, ~, 0)} 

(2,.,o,~ I o. o, ½)A2,/b 

= {(2,[oo,]10, 0, ~), (m(oo,, 10, 0, ~), (2[oo, jl0, ~, 0), 

(m,,o,) I 0, ~, 0), (2,[o,o11 ~,-~,-~), 

(n,o,o, I1 ~ -'~),(2~o,o~1' , , : ,  0, o), (a,o,o,l~, 0, o)}. 

The first coset describes an antiphase boundary.  
The two others correspond to two twin boundaries,  
each of them deriving from the other by an antiphase 
operation; thus, they are parallel and can both be 
labelled m,~ot i. 

4(b) Transition P21/b~ Pnam 

The index of P1 in A2f fb l l  is also 4. 
Here again we have four variants and three cosets 

of lost operators: 

,-) a2,/b11= Pl+{(110,1, 2 ,(710,-~,½)} 

+ {(2,r,,,o~ 11. I. 0). (b,,oo~[ ½. I. 0)} 
+ {(2,t,oo~] I. 0.-')z . (c,,,,,,,l~ .0. I)}. 

which can be written 

aZffb11= PI+(IlO, I,  ½){P1} 

+ ( b, ,,o)[I, ½,0)[ P I  + ( 110, I,  I){ P]} l- 

The three variants are each obtained from Vo by 
transformation through the following three charac- 
teristic cosets: 
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(11o,', ½)Pnam 
- { ( 1 1 0 ,  ' ,  : ) -  2 ,  ( i  I o, ' , ' ) , ( 2  ,E ,oo] I' , o ,o ) ,  

(m,,oo, I ~, 0, 0), (2to,oil ~, 0, '), 
(n,o,o, I', o, ½), (2foo,11 o, ½,0), (b, oo,, I o,-',, 0)} 

(2,t,ooj I ~, ~, O)Pnam 

= {(2,r,oo~l ½, ½,0), (b(,oo)l ½, ½,0), (1 IO, O, ½), 
( i l o ,  o, '), (2too,~ I o, o, o), 

(m, oo,, I O, O, 0), (2,to,o~ I', ' ,  '), (n,o,o, I', ½, ½)} 
(2,t,oo~l', O, ½)Priam 

= {(2,t,ooj 1½, o, ½), (C,,oo,1½, o, '), 
(1 Io, ~, o), (ilo, ' ,  o), (2,too,~ I o, ½, ½), 
(b, oo,, I 0, ½, ½), (2to,oil ½,0, 0), (a,o,o/[ ½,0, 0)} 

Here we have three antiphase boundaries 
(1[0,½,½),(110,0, ½) and (110,½,0) . 

The actual shape and extension of the domains are 
not determined by symmetry alone and are controlled 

by local elastic energy (i.e. bond energy) minimiz- 
ation. The weak energy of van der Waals bonds 
strongly suggests that most of the small perturbations 
in the arrangement of octahedra and molecular 
groups due to the domain boundaries occurs mainly 
through them. 

It should be noticed that, in addition to these 
domain structures essentially due to the transition, 
there may also appear independently twins by 
pseudomerohedry because of the close values of a 
and b on the one hand and of bm and cm on the other. 
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Abstract 

An estimate of the number of independent structural 
parameters that can be determined from a fiber 
diffraction pattern is derived and its application is 
demonstrated. At resolutions where independent esti- 
mates can be made for the intensity of every layer 
line, this number is set by sampling limits along each 
layer line [Makowski (1982). J. Appl. Cryst. 15, 546- 
557]. At resolutions beyond which separation of 
intensities due to individual layer lines is possible 
(the deconvolution limit) there may still be usable 
structural information in the pattern. Even though 
intensities on individual layer lines cannot be 
uniquely determined from these data, the data may 
still represent useful constraints on structural models 
of the diffracting particles. Here it is shown that 
beyond the deconvolution limit the total number of 
structural parameters obtainable increases linearly as 
a function of resolution. 
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Introduction 

Every diffuse arc of intensity in a fiber diffraction 
pattern has the potential for acting as a constraint on 
models of the diffracting object. Quantitative 
measurement of the intensity of a reflection can be 
made to some limiting resolution dependent on the 
distribution of reflections in reciprocal space and the 
degree of disorientation in the specimen. The limiting 
resolution is set by the degree of overlap that can be 
corrected using a numerical deconvolution procedure 
(Makowski, 1978). Reflections falling beyond this 
deconvolution limit cannot be accurately measured 
because their overlap with neighbors due to dis- 
orientation cannot be corrected by any numerical 
procedure. Nevertheless, it is clear that in many cases 
substantial structural information exists in the diffrac- 
ted intensity beyond this limit. Fig. 1 is a diffraction 
pattern from a fiber of the Pap adhesion pili from 
E. coli. With angular deconvolution (Makowski, 1978), 
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